Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.27.584106

ABSTRACT

Nucleic acid amplification tests including reverse transcription-quantitative PCR (RT-qPCR) are used to detect RNA from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Standardized measurements of RNA can facilitate comparable performance of laboratory tests in the absence of existing reference measurement systems early on in a pandemic. Interlaboratory study CCQM-P199b 'SARS-CoV-2 RNA copy number quantification' was designed to test the fitness-for-purpose of developed candidate reference measurement procedures (RMPs) for SARS-CoV-2 genomic targets in purified RNA materials, and was conducted under the auspices of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM) to evaluate the measurement comparability of national metrology institutes (NMIs) and designated institutes (DIs), thereby supporting international standardization. Twenty-one laboratories participated in CCQM-P199b and were requested to report the RNA copy number concentration, expressed in number of copies per microliter, of the SARS-CoV-2 nucleocapsid (N) gene partial region (NC_045512.2: 28274-29239) and envelope (E) gene (NC_045512.2: 26245-26472) (optional measurement) in samples consisting of in vitro transcribed RNA or purified RNA from lentiviral constructs. Materials were provided in two categories: lower concentration (approximately 10 x 1 - 10 x 4/uL in aqueous solution containing human RNA background) and high concentration (approximately 10 x 9/uL in aqueous solution without any other RNA background). For the measurement of N gene concentration in the lower concentration study materials, the majority of laboratories (n = 17) used one-step reverse transcription-digital PCR (RT-dPCR), with three laboratories applying two-step RT-dPCR and one laboratory RT-qPCR. Sixteen laboratories submitted results for E gene concentration. Reproducibility (% CV or equivalent) for RT-dPCR ranged from 19 % to 31 %. Measurements of the high concentration study material by orthogonal methods (isotope dilution-mass spectrometry and single molecule flow cytometry) and a gravimetrically linked lower concentration material were in a good agreement, suggesting a lack of overall bias in RT-dPCR measurements. However methodological factors such as primer and probe (assay) sequences, RT-dPCR reagents and dPCR partition volume were found to be potential sources of interlaboratory variation which need to be controlled when applying this technique. This study demonstrates that the accuracy of RT-dPCR is fit-for-purpose as a RMP for viral RNA target quantification in purified RNA materials and highlights where metrological approaches such as the use of in vitro transcribed controls, orthogonal methods and measurement uncertainty evaluation can support standardization of molecular methods.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
preprints.org; 2024.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202402.0179.v1

ABSTRACT

Alzheimer’s Disease (AD), a progressive and debilitating condition, is reported to be the most common type of dementia, with at least 55 million people believed to be currently affected. Many causation hypotheses of AD exist, yet the intriguing link between viral infection and its possible contribution to the known etiology of AD has become an attractive focal point of research for the field and a challenging study task. In this review, we will explore the historical perspective and milestones that led the field to investigate the viral connection to AD. Specifically, several viruses such as Herpes Simplex Virus 1 (HSV-1), Zika virus (ZIKV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with several others mentioned, include the various viruses presently considered within the field. We delve into the strong evidence implicating these viruses in the development of AD. We will also extend beyond these mere associations by carefully analyzing the potential mechanisms by which viruses may contribute to AD pathology. This includes but is not limited to direct neuronal infections, dysregulation of immune responses, and the impact on protein processing. Controversies and challenges of the viral-AD relationship emerge as we tease out these potential mechanisms considered. Looking forward, we emphasize the future directions the field should take to tackle the remaining unanswered questions and the glaring research gaps that persist. Overall, this review aims to provide a comprehensive survey of the past, present, and future of the potential link between viral infections and their association with AD development.


Subject(s)
Dementia , Alzheimer Disease , Severe Acute Respiratory Syndrome , Virus Diseases , Nerve Degeneration
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.14.20036129

ABSTRACT

BACKGROUND: The outbreak of COVID-19 caused by a novel Coronavirus (termed SARS-CoV-2) has spread to over 140 countries around the world. Currently, reverse transcription quantitative qPCR (RT-qPCR) is used as the gold standard for diagnostics of SARS-CoV-2. However, the positive rate of RT-qPCR assay of pharyngeal swab samples are reported to vary from 30~60%. More accurate and sensitive methods are urgently needed to support the quality assurance of the RT-qPCR or as an alternative diagnostic approach. METHODSWe established a reverse transcription digital PCR (RT-dPCR) protocol to detect SARS-CoV-2 on 194 clinical pharyngeal swab samples, including 103 suspected patients, 75 close contacts and 16 supposed convalescents. RESULTS: The limit of blanks (LoBs) of the RT-dPCR assays were ~1.6, ~1.6 and ~0.8 copies/reaction for ORF 1ab, N and E genes, respectively. The limit of detection (LoD) was 2 copies/reaction. For the 103 fever suspected patients, the sensitivity of SARS-CoV-2 detection was significantly improved from 28.2% by RT-qPCR to 87.4% by RT-dPCR. For close contacts, the suspect rate was greatly decreased from 21% down to 1%. The overall sensitivity, specificity and diagnostic accuracy of RT-dPCR were 90%, 100% and 93 %, respectively. In addition, quantification of the viral load for convalescents by RT-dPCR showed that a longer observation period was needed in the hospital for elderly patients. CONCLUSION: RT-dPCR could be a confirmatory method for suspected patients diagnosed by RT-qPCR. Furthermore, RT-dPCR was more sensitive and suitable for low viral load specimens from the both patients under isolation and those under observation who may not be exhibiting clinical symptoms.


Subject(s)
COVID-19 , Fever
SELECTION OF CITATIONS
SEARCH DETAIL